Sitem Peringatan Dini Banjir Berbasis Machine Learning - Algoritma Random Forest dan Gradient Boosting (Studi Kasus – DAS Ciliwung Jakarta)
Abstract
Flood is one of the natural disasters that frequently occurs in Indonesia, especially during the rainy season. One of the factors that triggers flooding is the overflowing water level of rivers. The use of technology to predict river water levels has been widely implemented. One of the technologies employed is the machine learning technique. This technique can learn patterns from provided data and produce accurate predictions. In this research, a model is designed to predict river water levels using historical data spanning 5 years from the Ciliwung-Cisadane River Basin Agency and BMKG. The dataset undergoes data preprocessing and is then processed using machine learning techniques. The algorithms employed are random forest and gradient boosting algorithms. Both algorithms are assessed in terms of performance by comparing the evaluation metrics RMSE, MAE, and MAPE. The Gradient Boosting algorithm is selected based on its superior performance evaluation, utilizing a parameter combination of n_estimators at 200, max_depth at 5, max_features at 3, min_samples_leaf at 1, and min_samples_split at 4, resulting in MAE and RMSE values of 0.0018 and 0.0163, respectively. With the findings of this research, it is expected to contribute to the development of more accurate river water level prediction technology and aid in making preventive decisions prior to flooding occurrences.
Downloads
References
Agung Hot Iman, F. R. (2022). Perbandingan Algoritma Klasifikasi Random Forest dan Extreme Gradient Boosting pada Dataset Cuaca Provinsi DKI Jakarta Tahun 2018. Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA). Jakarta.
Ahmad Roihan, P. A. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang. Indonesian Journal on Computer and Information Technology : Review paper , 5(1), 76.
Aji Primajaya, B. N. (2018). Random Forest Algorithm for Prediction of Precipitation. IJAIDM, 1(1), 27.
Rachmawardani, A., Wijaya, S. K., & Shopaheluwakan, A. (2022). Sistem Peringatan Dini Banjir Berbasis Machine Learning: Studi Literatur. Methomika Jurnal Manajemen Informatika Dan Komputerisasi Akuntansi, 6(6), 188–198. https://doi.org/10.46880/jmika.vol6no2.pp188-198
Hermanto. (2019). Comparison of Naïve Bayes Algorithm, C4.5 and Random Forest for Service Classification Ojek Online. Journal Publications & Informatics Engineering Research, 3(2), 269.
Jung, Y. (2018). Multiple predictingK-fold cross-validation for model selection. Journal Of Nonparametric Statistics, 30(1), 198-199.
Moh. Didi Haidir, I. N. (2016). Manajemen pengelolaan kualitas air sungai cisadane dari aspek kelembagaan (Studi Kasus Kota Tangerang). Seminar Nasional Sains dan Teknologi 2016. Jakarta.
Rica Yunita, M. S. (2017). Kajian Aliran Inlet Sudetan Sungai Ciliwung Ke Kanal Banjir Timur Untuk Pengendalian Banjir Jakarta. Jurnal Teknik Pengairan, 8(2), 158.
Santi Sulistiani, T. D. (2018). Prakiraan flare sinar-x matahari berdasarkan evolusi daerah aktif. Jurnal Sains Dirgantara , 16(1), 26.
Silvia Elsa Suryana, B. W. (2022) Sistem Peringatan Dini Banjir Berbasis Machine Learning: Studi Literatur. Methomika Jurnal Manajemen Informatika Dan Komputerisasi Akuntansi, 6(6), 188–198. https://doi.org/10.46880/jmika.vol6no2.pp188-198
Rachmawardani, A., Wijaya, S. K., & Shopaheluwakan, A. (2022). Penerapan gradient boosting dengan hyperopt untuk memprediksi keberhasilan telemarketing bank. Jurnal Gaussian, 10(4), 619.
Tzu-Tsung Wong, P.-Y. Y. (2020). Reliable Accuracy Estimates from k-Fold Cross Validation. IEEE Transactions on Knowledge and Data Engineering, 32(8), 1588.
V. Rodriguez-Galiano, M. S.-C.-O.-R. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, p. 3.