Pengaruh Carbon Fiber Reinforced Polymer (CFRP) pada performa aerodinamis dan struktural sayap pesawat: kajian pada Boeing 787 Dreamliner dan Airbus A350

  • Aisah Universitas Negeri Jakarta
  • Muhammad Rosyid Suseno Universitas Negeri Jakarta
  • Nova Nur Elisa Dewi Universitas Negeri Jakarta
Keywords: CFRP, sayap pesawat, rasio gaya angkat terhadap gaya hambat, efisiensi aerodinamis, performa struktural

Abstract

Kajian naratif ini bertujuan untuk mengevaluasi pengaruh penggunaan Carbon Fiber Reinforced Polymer (CFRP) terhadap performa aerodinamis dan struktural sayap pesawat, dengan menggunakan studi perbandingan antara Boeing 787 Dreamliner dan Airbus A350. CFRP, sebagai material komposit yang terdiri dari serat karbon sebagai penguat dalam matriks polimer, memiliki sifat unggul seperti rasio kekuatan-terhadap-berat dan modulus-terhadap-berat yang tinggi, koefisien ekspansi termal yang rendah, serta ketahanan lelah dan konduktivitas termal yang sangat baik. Penerapan CFRP pada struktur sayap, yang merupakan komponen penting dalam menghasilkan gaya angkat aerodinamis, berpotensi meningkatkan efisiensi dan performa pesawat. Melalui tinjauan literatur nasional dan internasional, studi ini menganalisis pengaruh CFRP terhadap parameter utama seperti rasio gaya angkat terhadap gaya hambat, bobot struktural, dan beban sayap. Tinjauan ini menyoroti bahwa CFRP memberikan kontribusi yang signifikan dalam meningkatkan performa aerodinamis dan struktural kedua pesawat tersebut.

Downloads

Download data is not yet available.

References

Afifah, A., Arifin, M., dan Agustian, E. S. (2023). Analisis pengaruh variasi kecepatan terbang pada biaya operasional berdasarkan konsumsi bahan bakar dan jam terbang pada pesawat boeing 737-800 dengan Rute CGK-UPG. Jurnal Mahasiswa Dirgantara, 2(1), 1-14.

Al-Lami, A., Hilmer, P., dan Sinapius, M. (2018). Eco-efficiency assessment of manufacturing carbon fiber reinforced polymers (CFRP) in aerospace industry. Aerospace Science and Technology, 79, 669-678.

Al-Mamun A.M., Hossain M.R., Iqbal M.A., Haque, M. Z., dan Sharmin, M.M. (2024). Recent developments in the synthesis of composite materials for aerospace: case study. Material Sci & Eng. 2024, 8(3), 109-116.

Aly, N. M. (2017). A review on utilization of textile composites in transportation towards sustainability. Dalam IOP conference series: materials science and engineering (hlm. 042002). DOI 10.1088/1757-899X/254/4/042002.

Bachmann, J., Hidalgo, C., dan Bricout, S. (2017). Environmental analysis of innovative sustainable composites with potential use in aviation sector—A life cycle assessment review. Science China Technological Sciences, 60:1301-1317.

Dababneh, O., dan Kipouros, T. (2018). A review of aircraft wing mass estimation methods. Aerospace Science and Technology, 72:256-266.

Duarte, E.J. (2024). Study of the Boeing 787-8 structure and reproduction of a 1: 80 scale model [Skripsi]. Universitat Politècnica de Catalunya.

Engels, A. (2014). Development of a smart production line for large CFRP box structures. [Disertasi]. RMIT University.

Garmann, D. J., & Visbal, M. R. (2014). Dynamics of revolving wings for various aspect ratios. Journal of Fluid Mechanics, 748:932-956.

Ghobadi, A. (2017). Common type of damages in composites and their inspections. World Journal of Mechanics, 7(2):24-33.

Gopal, K. V. N. (2016). Product design for advanced composite materials in aerospace engineering. Advanced Composite Materials for Aerospace Engineering, 413–428.

Hanna, C., Iryna, I., & Mykhailo, T. (2023). Use Of Composite Materials In Civil Aviation. New Integrations Of Modern Education In Universities, 310.

Kesarwani, S. (2017). Polymer composites in aviation sector. Int. J. Eng. Res, 6(10).

Kretov, A., & Tiniakov, D. (2022). Evaluation of the mass and aerodynamic efficiency of a high aspect ratio wing for prospective passenger aircraft. Aerospace, 9(9), 497.

Long, G., Sun, Y., Shang, Z., Wang, X., Xu, X., & Wang, T. (2024). Aerodynamic performance and wind-induced response of carbon fiber-reinforced polymer (CFRP) cables. Scientific Reports, 14(1), 8154.

Mitsubishi Heavy Industries (MHI). (2014). Production technology of large-scale composite wings for commercial aircraft. Mitsubishi Heavy Industries Technical Review, 51(4).

Nguyen, N. T., Ting, E., Chaparro, D., Drew, M. C., & Swei, S. S. M. (2017). Multi-objective flight control for drag minimization and load alleviation of high-aspect ratio flexible wing aircraft. Dalam 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (p. 1589).

Ozkan, D., Gok, M. S., & Karaoglanli, A. C. (2020). Carbon fiber reinforced polymer (CFRP) composite materials, their characteristic properties, industrial application areas and their machinability. Engineering Design Applications III: Structures, Materials and Processes, 235-253.

Pio, I. H. P., da Vera, N. O., & da Luz, F. (2022). Composites: A Recurrent and Simuttaneously Current Innovation in the Aeronautics and Automobiles Sectors. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 86(1), 27-38.

Setiawan, D. B., Hidayat, M. I. P., & Widyastuti, W. (2020). Simulasi Delaminasi pada Komposit Glass Fiber-reinforced Polymer (GFRP) dan Carbon Fiber-reinforced Polymer Menggunakan Metode Cohesive Zone Model (CZM) dan Virtual Crack Closure Technique (VCCT). Jurnal Teknik ITS, 9(1), B1-B6.

Sforza, P. M. (2018). Estimating Zero-Lift Drag Coefficients and Maximum L/D in Subsonic Flight. 2018 AIAA Aerospace Sciences Meeting. doi:10.2514/6.2018-0273

Song, T., Li, Y., Song, J., & Zhang, Z. (2014). Airworthiness considerations of supply chain management from Boeing 787 Dreamliner battery issue. Procedia Engineering, 80, 628-637.

Taylor, D., & Procter, M. (2010). The literature review: A few tips on conducting it. University of Toronto Writing Center. https://advice.writing.utoronto.ca/types-of-writing/literature-review/

Wijaya, Y. G., Suprijanto, S., Nugroho, A., Hijazi, R., & Adhika, D. R. (2024). Deteksi cacat pada karbon fiber reinforced polymer berdasarkan koefisien korelasi pearson dari sinyal echo ultrasonik. Scientific Journal of Mechanical Engineering Kinematika, 9(2), 153-166.

Zarei, A., Farahani, S., & Pilla, S. (2022). An experimental study on the manufacturing of engineered defects in composite plates. Composites Part C: Open Access, 9, 100327.

Zimmer, M., Feldwisch, J. M., & Ritter, M. R. (2022). Coupled CFD-CSM Analyses of a Highly Flexible Transport Aircraft by Means of Geometrically Nonlinear Methods. In 19th International Forum on Aeroelasticity and Structural Dynamics (hlm. 1-20), IFASD 2022.

Published
2025-03-23