Enhancing corrosion resistance of stainless steel 316L implants: Hydroxyapatite coating via DC and AC-DC voltage electrochemical deposition
Abstract
Coating hydroxyapatite (HAp) on stainless steel 316L (SS 316L) by electrochemical deposition method (ECD) was carried out to enhance the biocompatibility and corrosion resistance of metal implants for biomedical applications. One major issue in the ECD process is the water reduction causes an abundance of hydrogen (H2) bubbles, which subsequently contribute to forming a porous HAp coating. In this study, the effectiveness of HAp deposition was compared between a direct current (DC) process and a superposition alternating current-direct current (AC-DC) process. The ECD was conducted at pH 6 and 70°C, with the DC process operating at 5 V, while the AC-DC process employed 2.5 V AC and 2.5 V DC at 60 Hz. After deposition, the samples were annealed at 600°C for 2 hours in an argon atmosphere. The corrosion resistance was examined by potentiodynamic polarization. Electrochemical analysis indicated that the AC-DC superposition technique resulted in a significantly higher polarization resistance (R_p ) of 4.87 x 104 Ω/cm2, compared to the DC sample (7.65 x 103 Ω/cm2), with a more positive potential corrosion 〖(E〗_corr) and lower corrosion current density (i_corr). The AC-DC techniques minimizing (H2) bubbles formation and promoting smoother transition, facilitated the formation of a more homogenous coating and effectively covered substrate surface, thus exhibiting better corrosion resistance. Furthermore, this enhanced corrosion resistance has significant implications for biomedical applications. By prolonging implant lifespan, reducing the release of metal ions like (nickel and chromium), and pitting corrosion in simulated body fluid.
Downloads
References
Abd El-Halim, A. M., Baghlaf, A. O., & Sobahi, M. I. (1984). Influence of a superimposed a.c. on cadmium electroplating from an acidic chloride bath. Surface Technology, 22(2), 143–154. https://doi.org/10.1016/0376-4583(84)90050-5
Arul Xavier, S., & U., V. (2018). Electrochemically grown functionalized -Multi-walled carbon nanotubes/hydroxyapatite hybrids on surgical grade 316L SS with enhanced corrosion resistance and bioactivity. Colloids and Surfaces B: Biointerfaces, 171, 186–196. https://doi.org/10.1016/j.colsurfb.2018.06.058
Arul Xavier Stango, S., & Vijayalakshmi, U. (2021). Electrochemical deposition of HAP/f-MWCNTs and HAP/GO composite layers on 316L SS implant with excellent corrosion resistance performance. Materials Letters, 304, 130666. https://doi.org/10.1016/j.matlet.2021.130666
Chakraborty, R., Sengupta, S., Saha, P., Das, K., & Das, S. (2016). Synthesis of calcium hydrogen phosphate and hydroxyapatite coating on SS316 substrate through pulsed electrodeposition. Materials Science and Engineering: C, 69, 875–883. https://doi.org/10.1016/j.msec.2016.07.044
Chávez-Valdez, A., & Boccaccini, A. R. (2012). Innovations in electrophoretic deposition: Alternating current and pulsed direct current methods. Electrochimica Acta, 65, 70–89. https://doi.org/10.1016/j.electacta.2012.01.015
Chipman, G., Johnson, B., & Rappleye, D. (2024). Application of AC superimposed DC waveforms to bismuth electrorefining. Nuclear Engineering and Technology, 56(4), 1339–1346. https://doi.org/10.1016/j.net.2023.11.038
Dev, P. R., Anand, C. P., Michael, D. S., & Wilson, P. (2022). Hydroxyapatite coatings: a critical review on electrodeposition parametric variations influencing crystal facet orientation towards enhanced electrochemical sensing. Materials Advances, 3(21), 7773–7809. https://doi.org/10.1039/D2MA00620K
Dhiflaoui, H., Dabaki, Y., Zayani, W., Debbich, H., Faure, J., Larbi, A. B. C., & Benhayoune, H. (2024). Effects of Hydrogen Peroxide Concentration and Heat Treatment on the Mechanical Characteristics and Corrosion Resistance of Hydroxyapatite Coatings. Journal of Materials Engineering and Performance, 33(5), 2104–2115. https://doi.org/10.1007/s11665-023-08132-9
Djošić, M., Janković, A., & Mišković-Stanković, V. (2021). Electrophoretic Deposition of Biocompatible and Bioactive Hydroxyapatite-Based Coatings on Titanium. Materials, 14(18), 5391. https://doi.org/10.3390/ma14185391
Gopi, D., Indira, J., & Kavitha, L. (2012). A comparative study on the direct and pulsed current electrodeposition of hydroxyapatite coatings on surgical grade stainless steel. Surface and Coatings Technology, 206(11–12), 2859–2869. https://doi.org/10.1016/j.surfcoat.2011.12.011
Gopi, D., Prakash, V. C. A., & Kavitha, L. (2009). Evaluation of hydroxyapatite coatings on borate passivated 316L SS in Ringer’s solution. Materials Science and Engineering: C, 29(3), 955–958. https://doi.org/10.1016/j.msec.2008.08.020
Gopi, D., Rajeswari, D., Ramya, S., Sekar, M., R, P., Dwivedi, J., Kavitha, L., & Ramaseshan, R. (2013). Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel. Applied Surface Science, 286, 83–90. https://doi.org/10.1016/j.apsusc.2013.09.023
Gopi, D., Ramya, S., Rajeswari, D., & Kavitha, L. (2013). Corrosion protection performance of porous strontium hydroxyapatite coating on polypyrrole coated 316L stainless steel. Colloids and Surfaces B: Biointerfaces, 107, 130–136. https://doi.org/10.1016/j.colsurfb.2013.01.065
Kaliaraj, G. S., Siva, T., & Ramadoss, A. (2021). Surface functionalized bioceramics coated on metallic implants for biomedical and anticorrosion performance – a review. Journal of Materials Chemistry B, 9(46), 9433–9460. https://doi.org/10.1039/D1TB01301G
Koumya, Y., Ait Salam, Y., Khadiri, M. E., Benzakour, J., Romane, A., Abouelfida, A., & Benyaich, A. (2021). Pitting corrosion behavior of SS-316L in simulated body fluid and electrochemically assisted deposition of hydroxyapatite coating. Chemical Papers, 75(6), 2667–2682. https://doi.org/10.1007/s11696-021-01517-x
Kovac, Z. (1971). The Effect of Superimposed A.C. on D.C. in Electrodeposition of Ni-Fe Alloys. Journal of The Electrochemical Society, 118(1), 51. https://doi.org/10.1149/1.2407950
Lete, C., Marin, M., Anghel, E. M., Preda, L., Matei, C., & Lupu, S. (2019). Sinusoidal voltage electrodeposition of PEDOT-Prussian blue nanoparticles composite and its application to amperometric sensing of H2O2 in human blood. Materials Science and Engineering: C, 102, 661–669. https://doi.org/10.1016/j.msec.2019.04.086
Li, T.-T., Ling, L., Lin, M.-C., Peng, H.-K., Ren, H.-T., Lou, C.-W., & Lin, J.-H. (2020). Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. Journal of Materials Science, 55(15), 6352–6374. https://doi.org/10.1007/s10853-020-04467-z
Naghibi, S. A., Raeissi, K., & Fathi, M. H. (2014). Corrosion and tribocorrosion behavior of Ti/TiN PVD coating on 316L stainless steel substrate in Ringer’s solution. Materials Chemistry and Physics, 148(3), 614–623. https://doi.org/10.1016/j.matchemphys.2014.08.025
Nizami, M. Z. I., Campéon, B. D. L., & Nishina, Y. (2022). Electrodeposition of hydroxyapatite and graphene oxide improves the bioactivity of medical grade stainless steel. Materials Today Sustainability, 19, 100193. https://doi.org/10.1016/j.mtsust.2022.100193
Prasad, P. S., Hazra, C., Jena, S., Byram, P. K., Sen, R., Chakravorty, N., Das, S., & Das, K. (2023). Pulse galvanostatic electrodeposition of biosurfactant assisted brushite-hydroxyapatite coatings on 316 L stainless steel with enhanced electrochemical and biological properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 671, 131651. https://doi.org/10.1016/j.colsurfa.2023.131651
Puranto, P., Kamil, M. P., Suwondo, K. P., Mellinia, A. D., Avivin, A. N., Ulfah, I. M., Fitriani, D. A., Azahra, S. A., Hanafi, R., Saudi, A. U., Masruroh, & Kozin, M. (2024). Unveiling the pH influence: Enhancing hydroxyapatite-coated titanium biomedical implants through electrochemical deposition. Ceramics International, 50(8), 13412–13421. https://doi.org/10.1016/j.ceramint.2024.01.253
Safavi, M. S., Walsh, F. C., Surmeneva, M. A., Surmenev, R. A., & Khalil-Allafi, J. (2021). Electrodeposited Hydroxyapatite-Based Biocoatings: Recent Progress and Future Challenges. Coatings, 11(1), 110. https://doi.org/10.3390/coatings11010110
Sarbjit , Bala, N., & Khosla, C. (2019). Characterization of Hydroxyapatite Coating on 316L Stainless Steel by Sol–Gel Technique. Surface Engineering and Applied Electrochemistry, 55(3), 357–366. https://doi.org/10.3103/S1068375519030104
Sheshadri, B. S., Koppa, V., Jai Prakash, B. S., & Mayanna, S. M. (1981). The effect of the superposition of an alternating current on a direct current on the electrodeposition of Ni-Fe alloys. Surface Technology, 13(2), 111–117. https://doi.org/10.1016/0376-4583(81)90051-0
Srimathi, S. N., Sheshadri, B. S., & Mayanna, S. M. (1982). Electroplating of thin films of Fe-Ni alloys: Some effects of superimposed alternating current on direct current. Surface Technology, 17(3), 217–227. https://doi.org/10.1016/0376-4583(82)90004-8
Thanh, D. T. M., Nam, P. T., Phuong, N. T., Que, L. X., Anh, N. Van, Hoang, T., & Lam, T. D. (2013). Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel. Materials Science and Engineering: C, 33(4), 2037–2045. https://doi.org/10.1016/j.msec.2013.01.018
Vijayavalli, R., Rao, P. V. V., Sampath, S., & Udupa, H. V. K. (1963). Function of A.C. Superimposed on D.C. in the Anodic Oxidation of Lead in Sulfuric Acid. Journal of The Electrochemical Society, 110(1), 1. https://doi.org/10.1149/1.2425664
Vladescu, A., Vranceanu, D. M., Kulesza, S., Ivanov, A. N., Bramowicz, M., Fedonnikov, A. S., Braic, M., Norkin, I. A., Koptyug, A., Kurtukova, M. O., Dinu, M., Pana, I., Surmeneva, M. A., Surmenev, R. A., & Cotrut, C. M. (2017). Influence of the electrolyte’s pH on the properties of electrochemically deposited hydroxyapatite coating on additively manufactured Ti64 alloy. Scientific Reports, 7(1), 16819. https://doi.org/10.1038/s41598-017-16985-z
Voisin, T., Shi, R., Zhu, Y., Qi, Z., Wu, M., Sen-Britain, S., Zhang, Y., Qiu, S. R., Wang, Y. M., Thomas, S., & Wood, B. C. (2022). Pitting Corrosion in 316L Stainless Steel Fabricated by Laser Powder Bed Fusion Additive Manufacturing: A Review and Perspective. JOM, 74(4), 1668–1689. https://doi.org/10.1007/s11837-022-05206-2
Yan, L., Xiang, Y., Yu, J., Wang, Y., & Cui, W. (2017). Fabrication of Antibacterial and Antiwear Hydroxyapatite Coatings via In Situ Chitosan-Mediated Pulse Electrochemical Deposition. ACS Applied Materials & Interfaces, 9(5), 5023–5030. https://doi.org/10.1021/acsami.6b15979